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Abstract
We classify all the global phase portraits of the cubic polynomial vector fields
of Lotka–Volterra type having a rational first integral of degree 2. For such
vector fields there are exactly 28 different global phase portraits in the Poincaré
disc up to a reversal of sense of all orbits.

PACS number: 02.30.Hq
Mathematics Subject Classification: 34C05, 34A34, 34C14

1. Introduction

Let P and Q be two real polynomials in the variables x and y, then we say that X = (P,Q) :
R

2 −→ R
2 is a cubic polynomial vector field if the maximum of the degrees of the polynomials

P and Q is 3. We say that a cubic polynomial vector field is of Lotka–Volterra type if x is a
factor of P and y is a factor of Q.

Lotka–Volterra systems typically model the time evolution of conflicting species in
biology [20]. They have been largely studied starting with Lotka [18] and Volterra [23].
There are many other natural phenomena modelled by Lotka–Volterra systems, such as the
coupling of waves in laser physics [15], the evolution of electrons, ions and neutral species in
plasma physics [16]. In hydrodynamics they model the convective instability in the Benard
problem [8]. Similarly, they appear in the interaction of gases in a background host medium
[19]. In the theory of partial differential equations they can be obtained as a discretized
form of the Korteweg–de Vries equation [5]. They also play a role in such diverse topics of
current interest as neural networks [21], biochemical reactions, etc. Their interest becomes
crucial after the work of Brenig and Goriely [6, 7], where they prove that a large class
of ordinary differential equations implied in various fields of physics, biology, chemistry
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and economics can be transformed into a three-dimensional Lotka–Volterra system using a
quasimonomial formalism. In the context of plasma physics, all the nonlinear terms represent
binary interactions or model certain transport across the boundary of the system. Typically in
all these applications, the Lotka–Volterra systems are taken quadratic. Further models [13]
were introduced, generalizing the Lotka–Volterra systems, to model the interaction among
biochemical populations. Cubic polynomial Lotka–Volterra vector fields have appeared
explicitly modelling certain phenomena arising in oscillating chemical reactions as the so-
called Lotka–Volterra–Brusselator (see [12]) and in well-known predator–prey models that
give rise to periodic variations in the populations (see [11, 17, 22]), etc.

The main goal of this paper is to classify the global phase portraits in the Poincaré disc (see
subsection 3.2) of the cubic polynomial vector fields (P,Q) of Lotka–Volterra type having a
rational first integral H of degree 2 and with P and Q coprime.

If f = f (x, y) and g = g(x, y) are polynomials then we say that the function f/g is
rational. If the maximum of the degrees of f and g is 2 and f and g are coprime, then we say
that f/g is a rational function of degree 2.

In this paper we do not allow that vector fields (P,Q) be quadratic, because the quadratic
systems having such kind of first integrals have been studied recently in [10]. Moreover as in
that paper we do not allow that H or 1/H be a polynomial because the quadratic Lotka–Voltera
systems having a polynomial first integral have been studied in [9].

We note that the cubic polynomial vector fields having a rational first integral of degree
2 have all their orbits contained in conics. Therefore, their orbits are very simple curves but
this does not prevent that their phase portraits can present a rich variety of dynamics as is
illustrated in our main result.

Theorem 1. The phase portrait of a planar cubic polynomial vector field of Lotka–Volterra
type with a rational first integral of degree 2 and with P and Q coprime, or the phase portrait
with the sense of all orbits reversed, is topologically equivalent to one of the 28 phase portraits
described in figure 1.

The paper is organized as follows. In section 2 we characterize the cubic polynomial
vector fields of Lotka–Volterra type having a rational first integral of degree 2. In section 3
we present the basic results on singular points, Poincaré compactification and homogeneous
quadratic vector fields that we shall need. The rest of the sections are dedicated to the search
of these phase portraits.

2. Characterization of cubic polynomial vector fields of Lotka–Volterra type

The cubic polynomial vector fields of Lotka–Volterra type having a rational first integral of
degree 2 which is not polynomial are characterized in the next result.

Proposition 2. A Lotka–Volterra cubic polynomial vector field (P,Q) having a rational first
integral of degree 2 which is not polynomial can be written as follows,

P = x(a + bx + dx2 − ey2),

Q = y(−a − cy + dx2 − ey2),
(1)

and its first integral becomes

H = a + bx + cy + dx2 + ey2

xy
. (2)
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(X1.1) (X1.2) (X1.3) (X2.1)

(X2.2) (X2.3) (X2.4) (X2.6)

(X2.9) (X2.10) (X2.11)
(X4.1)

(X4.2) (X4.3) (X5.1) (X5.2)

(X5.3) (X6) (X7.1) (X7.2)

(X8) (X11.1) (X11.2) (X11.3)

(X12.1) (X12.2) (X15) (X16)

Figure 1. The 28 non-topologically equivalent phase portraits of a planar cubic polynomial vector
field of Lotka–Volterra type with a rational first integral of degree 2.

Proof. Assume that H = f/g is a rational first integral of degree 2 for a cubic Lotka–Volterra
system having no polynomial first integrals. Then f and g are coprime, and the maximum
degree of f and g is 2. Since the inverse of a rational first integral is another rational first
integral we can assume that g is of degree 2.
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Clearly all the orbits of the cubic Lotka–Volterra system having H as a first integral are
contained in the algebraic curves f (x, y) − hg(x, y) = 0 with h ∈ R or in g(x, y) = 0. Note
that this last algebraic curve corresponds to the value infinity of the first integral H , or to the
value zero of the first integral 1/H .

First assume that g(0, 0) �= 0. Then let h = H(0, 0), eventually h can be zero. Since H

is a first integral, the conic f (x, y) − hg(x, y) = 0 passing through the origin is formed by
solutions of the cubic Lotka–Volterra system. Since this system has the straight lines x = 0
and y = 0 invariant and both pass through the origin, it follows that the unique conic formed
by solutions and containing the origin is kxy = 0, where k is a nonzero constant. Therefore
f (x, y) − hg(x, y) = kxy for some constant k �= 0. So we can consider the first integral

H − h = f (x, y)

g(x, y)
− h = f (x, y) − hg(x, y)

g(x, y)
= k

xy

g(x, y)
.

Since k/(H −h) = g(x, y)/(xy) = (a+bx +cy +dx2 +ey2 +mxy)/(xy) is also a first integral,
we have that the cubic Lotka–Volterra system has the rational function H = k/(H − h) − m,
i.e. the function (2) as a first integral.

Now assume that g(0, 0) = 0. Then by the previous arguments we have that
g(x, y) = kxy for some nonzero constant k. Since H/k = f (x, y)/(xy) = (a + bx +
cy + dx2 + ey2 + mxy)/(xy) is also a first integral, we have that the cubic Lotka–Volterra
system has the rational function H = H/k − m, i.e. the function (2) as a first integral.

Clearly the Hamiltonian system

dx

dt
= −∂H

∂y
,

dy

dt
= ∂H

∂x

has H as a first integral. Then all systems having H as a first integral are of the form

dx

ds
= −F(x, y)

∂H

∂y
,

dy

ds
= F(x, y)

∂H

∂x
,

where F(x, y) is a function. This last system can be obtained from the previous one doing
the rescaling of the time variable dt = F(x, y) ds. Hence the cubic Lotka–Volterra system
having the first integral (2) is obtained taking F(x, y) = x2y2. This completes the proof of
the proposition. �

3. Basic results

In this section we introduce the basic definitions, notations and results that we will need for
the analysis of the local phase portraits of the finite and infinite singular points of the cubic
polynomial vector fields of Lotka–Volterra type.

3.1. Singular points

A point p ∈ R
2 is said to be a singular point of the vector field X = (P,Q) if

P(p) = Q(p) = 0. We recall first some results which hold when P and Q are analytic
functions in a neighbourhood of p. As usual Px denotes the partial derivative of P with respect
to the variable x.

If � = Px(p)Qy(p) − Py(p)Qx(p) and T = Px(p) + Qy(p), then the singular point p
is said to be non-degenerate if � �= 0. Then p is an isolated singular point. Moreover, p is
a saddle if � < 0, a node if T 2 � 4� > 0 (stable if T < 0, unstable if T > 0), a focus if
4� > T 2 > 0 (stable if T < 0, unstable if T > 0), and either a weak focus or a centre if
T = 0 < �; for more details see [2], p 183.
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The singular point p is called hyperbolic if the two eigenvalues of the Jacobian matrix
DX(p) have a nonzero real part. So, the hyperbolic singular points are the non-degenerate
ones except the weak focus and the centres.

A degenerate singular point p (i.e. � = 0) with T �= 0 is called semi-hyperbolic, and p
is isolated in the set of all singular points. Now we summarize the results on semi-hyperbolic
singular points that we shall need in this paper, for a proof see theorem 65 of [2].

Proposition 3. Let (0, 0) be an isolated point of the vector field (F (x, y), y +G(x, y)), where
F and G are analytic functions in a neighbourhood of the origin starting at least with quadratic
terms in the variables x and y. Let y = g(x) be the solution of the equation y +G(x, y) = 0 in
a neighbourhood of (0, 0). Assume that the development of the function f (x) = F(x, g(x))

is of the form f (x) = µxm + HOT (higher order terms), where m � 2 and µ �= 0. When m
is odd, then (0, 0) is either an unstable node, or a saddle depending on if µ > 0, or µ < 0,

respectively. In the case of the saddle the stable separatrices are tangent to the x-axis. If
m is even, then (0, 0) is a saddle node, i.e. the singular point is formed by the union of two
hyperbolic sectors with one parabolic sector. The stable separatrix is tangent to the positive
(respectively negative) x-axis at (0, 0) according to µ < 0 (respectively µ > 0). The two
unstable separatrices are tangent to the y-axis at (0, 0).

The singular points which are non-degenerate or semi-hyperbolic are called elementary.
When � = T = 0 but the Jacobian matrix at p is not the zero matrix and p is isolated

in the set of all singular points, we say that p is nilpotent. Now we summarize the results on
nilpotent singular points that we shall need. For a proof see [1], or theorems 66 and 67 and
the simplified scheme of section 22.3 of [2].

Proposition 4. Let (0, 0) be an isolated singular point of the vector field (y + F(x, y),

G(x, y)), where F and G are analytic functions in a neighbourhood of the origin starting
at least with quadratic terms in the variables x and y. Let y = f (x) be the solution of the
equation y + F(x, y) = 0 in a neighbourhood of (0, 0). Assume that the development of the
function G(x, f (x)) is of the form Kxκ + HOT and �(x) ≡ (∂F/∂x + ∂G/∂y)(x, f (x)) =
Lxλ + HOT with K �= 0, κ � 2 and λ � 1. Then the following statements hold.

(1) If κ is even and
(1.a) κ > 2λ + 1, then the origin is a saddle node. Moreover the saddle node has one

separatrix tangent to the semi-axis x < 0, and the other two separatrices tangent to the
semi-axis x > 0.

(1.b) κ < 2λ + 1 or � ≡ 0, then the origin is a cusp, i.e. a singular point formed by the
union of two hyperbolic sectors. Moreover, the cusp has two separatrices tangent to the
positive x-axis.

(2) If κ is odd and K > 0, then the origin is a saddle. Moreover, the saddle has two
separatrices tangent to the semi-axis x < 0, and the other two tangent to the semi-axis
x > 0.

(3) If κ is odd, K < 0 and
(3.a) λ even, κ = 2λ + 1 and L2 + 4K(λ + 1) � 0, or λ even and κ > 2λ + 1, then the origin

is a stable (unstable) node if L < 0 (L > 0), having all the orbits tangent to the x-axis
at (0, 0).

(3.b) λ odd, κ = 2λ + 1 and L2 + 4K(λ + 1) � 0, or λ odd and κ > 2λ + 1 then the origin
is an elliptic saddle, i.e. a singular point formed by the union of one hyperbolic sector
and one elliptic sector. Moreover, one separatrix of the elliptic saddle is tangent to the
semi-axis x < 0, and the other to the semi-axis x > 0.
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(b)(a) (c)

(d) (e)

(f) (g)

Figure 2. The phase portraits of the homogeneous quadratic vector fields.

(3.c) κ = 2λ + 1 and L2 + 4K(λ + 1) < 0, or κ < 2λ + 1, then the origin is a focus or a
centre, and if �(x) ≡ 0 then the origin is a centre.

Finally, if the Jacobian matrix at the singular point p is identically zero, and p is isolated
inside the set of all singular points, then we say that p is linearly zero. The study of its local
phase portrait needs a special treatment (directional blow-ups), see for more details [3]. Note
that if in this process, the resulting vector field is a homogeneous quadratic vector field, then
the global phase portraits are well known, see figure 2 and for more details [24].

3.2. Poincaré compactification

Let X ∈ Pn(R
2) be a planar polynomial vector field of degree n. The Poincaré compactified

vector field p(X) corresponding to X is an analytic vector field induced on S
2 as follows (see,

for instance, [14]). Let S
2 = {y = (y1, y2, y3) ∈ R

3 : y2
1 + y2

2 + y2
3 = 1} (the Poincaré sphere)

and TyS
2 be the tangent plane to S

2 at point y. Identify R
2 with T(0,0,1)S

2. Consider the central
projection f : T(0,0,1)S

2 → S
2. This map defines two copies of X on S

2, one in the northern
hemisphere and the other in the southern hemisphere. Denote by X′ the vector field Df ◦ X

defined on S
2 except on its equator S

1 = {y ∈ S
2 : y3 = 0}. Clearly S

1 is identified to the
infinity of R

2. In this paper when we talk about the circle of the infinity of X we simply talk
about the infinity.

In order to extend X′ to a vector field on S
2 (including S

1) it is necessary that X satisfies
suitable conditions. In the case that X ∈ Pn(R

2), p(X) is the only analytic extension of
yn−1

3 X′ to S
2. On S

2\S
1 there are two symmetric copies of X, and knowing the behaviour of

p(X) around S
1, we know the behaviour of X in a neighbourhood of the infinity. The Poincaré

compactification has the property that S
1 is invariant under the flow of p(X). The projection

of the closed northern hemisphere of S
2 on y3 = 0 under (y1, y2, y3) �−→ (y1, y2) is called

the Poincaré disc, and it is denoted by D
2.
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In the rest of this paper we say that two polynomial vector fields X and Y on R
2 are

topologically equivalent if there exists a homeomorphism on S
2 preserving the infinity S

1

carrying orbits of the flow induced by p(X) into orbits of the flow induced by p(Y ).
As S

2 is a differentiable manifold, for computing the expression for p(X), we can
consider the six local charts Ui = {y ∈ S

2 : yi > 0}, and Vi = {y ∈ S
2 : yi < 0}

where i = 1, 2, 3; and the diffeomorphisms Fi : Ui → R
2 and Gi : Vi → R

2 for
i = 1, 2, 3 are the inverses of the central projections from the planes tangent at the points
(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1), respectively. If we denote
by z = (z1, z2) the value of Fi(y) or Gi(y) for any i = 1, 2, 3 (so z represents different things
according to the local charts under consideration), then some easy computations give for p(X)

the following expressions:

zn
2�(z)

(
Q

(
1

z2
,
z1

z2

)
− z1P

(
1

z2
,
z1

z2

)
,−z2P

(
1

z2
,
z1

z2

))
in U1, (3)

zn
2�(z)

(
P

(
z1

z2
,

1

z2

)
− z1Q

(
z1

z2
,

1

z2

)
,−z2Q

(
z1

z2
,

1

z2

))
in U2,

�(z) (P (z1, z2),Q(z1, z2)) in U3,

(4)

where �(z) = (
z2

1 + z2
2 + 1

)− 1
2 (n−1)

. The expression for Vi is the same as that for Ui except
for a multiplicative factor (−1)n−1. In these coordinates for i = 1, 2, z2 = 0 always denotes
the points of S

1. In what follows we omit the factor �(z) by rescaling the vector field p(X).
Thus, the expression of p(X) becomes a polynomial vector field in each local chart.

4. Normal forms

Now we shall reduce the number of five parameters of the cubic polynomial vector fields
having a rational first integral of degree 2 to at most two parameters.

Proposition 5. Any cubic polynomial vector field (P,Q) of Lotka–Volterra type having a
rational first integral of degree 2 with P and Q coprime can be written as one of the following
vector fields:

X1 = (x(1 + bx + x2 + y2), y(−1 − cy + x2 + y2)),

X2 = (x(1 + bx + x2 − y2), y(−1 − cy + x2 − y2)),

X3 = (x(1 + bx − x2 − y2), y(−1 − cy − x2 − y2)),

X4 = (x(1 + bx − x2 + y2), y(−1 − cy − x2 + y2)),

X5 = (x(1 + bx + x2), y(−1 − y + x2)),

X6 = (x(1 + bx − x2), y(−1 − y − x2)),

X7 = (x(1 + bx + x2), y(−1 + x2)),

X8 = (x(1 + bx − x2), y(−1 − x2)),

X9 = (x(1 + x2), y(−1 − cy + x2)),

X10 = (x(1 − x2), y(−1 − cy − x2)),

X11 = (x(bx + x2 − y2), y(−y + x2 − y2)),

X12 = (x(bx − x2 − y2), y(−y − x2 − y2)),

X13 = (x(x + x2 − y2), y(x2 − y2)),

X14 = (x(x − x2 − y2), y(−x2 − y2)),
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X15 = (x(x + x2), y(−y + x2)),

X16 = (x3, y(−y + x2)),

with b � 0 and c � 0.

Proof. Let x̄ = αx, ȳ = βy, t̄ = γ t. Then the transformed vector field (P̄ ,Q̄), writes in the
transformed variables as (x̄(a/γ + bx̄/(αγ ) + dx̄2/(α2γ ) − eȳ2/(β2γ )), (ȳ(−a/γ −
cȳ/(βγ ) + dx̄2/(α2γ ) − eȳ2/(β2γ )).

Case 1: ade �= 0. Then we can choose α, β and γ conveniently for obtaining Xk with
k = 1, 2, 3, 4.

Case 2: e = 0. Consequently d �= 0, otherwise the vector field should not be cubic.

Subcase 2.1: ac �= 0. Choosing α, β and γ conveniently we get the vector fields Xk with
k = 5, 6.

Subcase 2.2: c = 0 and ab �= 0. We obtain the vector fields Xk with k = 7, 8.

Subcase 2.3: b = 0 and ac �= 0. We obtain the vector fields Xk with k = 9, 10.

Subcase 2.4: a = 0 and c �= 0. We get the vector fields Xk with k = 15, 16.

Subcase 2.5: a = c = 0. In this subcase the polynomials P and Q are not coprime.

Case 3: e �= 0 and a = 0.

Subcase 3.1: d �= 0. Again choosing α, β and γ conveniently we get the vector fields Xk with
k = 11, 12, 13, 14.

Subcase 3.2: d = 0. In this subcase we again obtain the vector fields Xk with k = 15, 16
doing the change of variables (x, y, t) �→ (y, x,−t).

Case 4: ea �= 0 and d = 0. In this subcase we again obtain the vector fields Xk with k = 5, 6
doing the change of variables (x, y, t) �→ (y, x,−t).

Finally we note that if we do the change of variables (x, y) → (−x, y), we get another
vector field of the form (1) with −b instead of b. So, we can assume that b � 0 and, similarly,
we also can assume that c � 0. This completes the proof of the proposition. �

Note that the families from X1 to X4 depend on two parameters b and c, the families from
X5 to X12 depend only on one parameter b, and the families from X13 to X16 are reduced to a
unique vector field.

5. The infinite singular points

In this section we use the definitions and relations introduced in subsection 3.2 dedicated to
the Poincaré compactification. We first study the chart U1. As we see in the next result the
infinity in the Poincaré compactification is filled of singular points.

Proposition 6. The vector fields 12 have the infinite filled with singular points.

Proof. The vector field in the local chart U1 is(−z1z2(b + cz1 + 2az2),−z2
(
d + bz2 − ez2

1 + az2
2

))
. (5)

Therefore the infinity, z2 = 0 is a line of singular points. �

Even that all the infinity is full of singular points, there are special ones which have
interest in building our phase portraits. As a matter of fact, we note that the vector field (5),
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after rescaling the time by z2, writes
(−z1(b + cz1 + 2az2),−

(
d + bz2 − ez2

1 + az2
2

))
. Now we

study the infinite singular points of this new vector field. We do not consider the case d = 0,

because it does not occur in our normal forms. If bcd �= 0 and c2d − b2e = 0, then there
is the additional singular point (−b/c, 0) in U1 whose eigenvalues are ±(b/c)

√
c2 − 4ae. If

d �= 0 and b = c = 0 then there are two singular points at infinity in U1, namely (±√
d/e, 0)

if de > 0.

In the chart U2 and after rescaling the time by z2, the vector field writes
(
z1(c + bz1 +

2az2),
(
e + cz2 − dz2

1 + az2
2

))
. If e = 0 then the origin of the chart U2 is a singular point with

both eigenvalues equal to c. Consequently, if e = 0 and c > 0, then the origin of U2 is an
unstable node; and if e = c = 0 then the origin of U2 is linearly zero, and the system becomes
the homogeneous quadratic vector field

(
z1(bz1 + 2az2),−dz2

1 + az2
2

)
.

Proposition 7. The following statements hold.

(a) X1, X3, X12, X13, X14 have no infinite singular points.
(b) X2 has only the infinite singular point (−1, 0) in U1 if b = c �= 0. This singular point is

a saddle if b > 2, and a centre if 0 < b < 2. If b = 0 then there are two singular points
(±1, 0) in U1, which are centres. If b = 2 then the components of X2 are not coprime.

(c) X4 has only the infinite singular point (−1, 0) in U1 if b = c �= 0, which is a saddle. If
b = c = 0, there are two saddles in U1.

(d) Xk with k ∈ {5, 6} has only the origin of U2 as an infinite singular point, which is an
unstable node.

(e) X7 has only the origin of U2 as infinite singular point, which is linearly zero. If b > 2,
then its local phase portrait is the origin of figure 2(f )). If b < 2, its local phase portrait
is the origin of figure 2(a)). If b = 2 the components of X7 are not coprime.

(f) X8 has only the origin of U2 as an infinite singular point, which is linearly zero and its
local phase portrait is the origin of figure 2(f )).

(g) X9 has only the origin of U2 as an infinite singular point, which is a hyperbolic unstable
node except if c = 0 where it is linearly zero. Its local phase portrait is the origin of
figure 2(a)).

(h) X10 has only the origin of U2 as an infinite singular point, which is a hyperbolic unstable
node except if c = 0 where it is linearly zero and its local phase portrait is the origin of
figure 2(f )).

(i) X11 has only the infinite singular point (−1, 0) in U1 if b = 1, which is a saddle.
(j) X15 and X16 have only the origin of U2 as an infinite singular point, which is an unstable

node.

Proof. The proof of statements (a)–(d) and (i) and (j) except the centre for statement (b),
which is studied here, follow easily from the previous information on the singular points at
infinity in the local charts U1 and U2.

In order to show that (−1, 0) of the chart U1 of X2 is a centre when b = c, we must
transform the vector field into the canonical form for a vector field to be candidate to have a
centre. We follow the next steps.

The rescaled vector field of the chart U1 of X2 is
(−z1(b + bz1 + 2z2),−

(
1 + bz2 −

z2
1 + z2

2

))
. Translating the singular point to the origin, the vector field writes

(
bz1 + 2z2 −

2z1z2 − bz2
1,−2z1 − bz2 + z2

1 − z2
2

)
, where we have done the same name to the new variables

z1 and z2. At z1 = z2 = 0 the Jacobian matrix is

M =
(

b 2
−2 −b

)
,
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with eigenvalues ±√
b2 − 4. So, the Jordan matrix is

J =
(

0 −√
4 − b2√

4 − b2 0

)

and we can find easily from M = BJB−1 a transformation matrix B

B =
(

− b
2 −

√
4−b2

2

1 0

)

such that it will allow us to build the canonical vector field through the change of variables(
Z1

Z2

)
= B−1

(
z1

z2

)
.

The canonical vector field writes
(−Z2 + RZ2

1 − bZ1Z2
/

2 + S,Z1 + bZ2
1

/
4 − T Z1Z2 −

bZ2
2

/
4
)
, where R = −√

4 − b2/4, S = √
4 − b2/4 and T = √

4 − b2/2. Consequently as
R + S = 0, using [4] we can say that the singular point (−1, 0) of the chart U1 is a centre
when b = c.

The vector field X7 in the chart U2 is
(
z1(bz1 + 2z2),−z2

1 + z2
2

)
, so it is quadratic and

homogeneous. As a consequence its local phase portrait is the origin of one of the phase
portraits of figure 2. Now, in order to find the corresponding one, we must study the infinity.
When b > 2 there are two real singular points in the chart U1 namely (−b +

√
b2 − 4)/2, 0)

and (−b − √
b2 − 4)/2, 0), having both eigenvalues equal to

√
b2 − 4 and −√

b2 − 4
respectively. Moreover, the origin of the chart U2 is a saddle. This proves that the local
phase portrait of X7 at the origin of U2 is the one of figure 2(f ) if b > 2, and of figure 2(a)
if b < 2.

The expression of X8 in the chart U2 is
(
z1(bz1 + 2z2), z

2
1 + z2

2

)
, which is quadratic and

homogeneous. As before its local phase portrait is the origin of one of the phase portraits of
figure 2 and in order to find the corresponding one, we must study the infinity. Then in the chart
U1 we obtain two singular points namely (−b +

√
b2 + 4)/2, 0) and (−b −

√
b2 + 4)/2, 0),

having both eigenvalues equal to
√

b2 + 4 and −
√

b2 + 4 respectively. Moreover, the origin
of the chart U2 is a saddle. This shows that the local phase portrait of X8 at the origin of U2 is
the one of figure 2(f ).

The vector field X9 in the chart U2 is
(
z1(2z2 + c), cz2 − z2

1 + z2
2

)
. The origin has

eigenvalues (c, c) and consequently when c = 0 is linearly zero. But now the vector field is
quadratic and homogeneous and as before we can use the results given in figure 2. In order
to find the corresponding phase portrait, we must study the infinity. The are no real singular
points in the chart U1. The origin of the chart U2 is a saddle. This proves that if c = 0, the
local phase portrait of X9 at the origin of U2 is the one of figure 2(a).

The expression of X10 in the chart U2 is
(
z1(2z2 + c), cz2 − z2

1 + z2
2

)
. The origin has

eigenvalues (c, c) and consequently when c = 0 is linearly zero. But now the vector field is
quadratic and homogeneous and as before we can use the results given in figure 2. In order
to find the corresponding phase portrait, we must study the infinity. Then in the chart U1 we
obtain two singular points namely (±1, 0) which are stable and unstable nodes respectively.
Moreover, the origin of the chart U2 is a saddle. This proves that if c = 0, the local phase
portrait of X10 at the origin of U2 is the one of figure 2(f ). �

6. The finite singular points

The vector field X1. For this vector field we define p = b2 − 4 and q = c2 + 4. Now using the
results of subsection 3.1, we study the local phase portraits of its singular points.
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Y Y
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Figure 3. The local phase portrait of the vector fields (6), (7), (9) for c > 2 and (11) at the origin.

(1.1) If b > 2 and c � 0, then X1 has the following seven finite singular points: (0, 0)

is a hyperbolic saddle; (0, (c ± √
q)/2) are hyperbolic unstable nodes; ((−b +

√
p)/2, 0)

is a hyperbolic stable node, and ((−b − √
p)/2, 0) is a hyperbolic unstable node and

(−2
√

q/(b
√

q ± c
√

p), (cp ∓ b
√

pq)/2(b2 + c2)) are hyperbolic saddles.

(1.2) If b = 2 and c � 0, then X1 has the following four finite singular points: (0, 0) is a
hyperbolic saddle; (0, (c±√

q)/2) are hyperbolic unstable nodes and (−1, 0) is linearly zero.
To study this singular point, we first translate it to the origin; i.e. we consider the change of
variables X = x + 1, Y = y, and the vector field X1 becomes

X1 = (−X2 − Y 2 + XY 2 + X3,−2XY − cY 2 + X2Y + Y 3). (6)

Now we do the blow-up (X, Y ) → (X, v), where Y = vX, and the vector field (6) becomes

X1 = (−X2 − X2v2 + X3 + X3v2,−Xv − cXv2 + Xv3).

Rescaling the independent variable by X we get the vector field

X1 = (−X − Xv2 + X2 + X2v2,−v − cv2 + v3).

On the straight line X = 0 there are three singular points, namely (0, 0),

(0, (c ± √
(q)/2)). The first is a hyperbolic stable node and the other two are saddles. Undoing

the blow-up, the origin of the vector field (6) has the local phase portrait of figure 3(a).

(1.3) If 0 � b < 2 and c � 0, then X1 has the following three finite singular points: (0, 0) is a
hyperbolic saddle and (0, (c ± √

q)/2) are hyperbolic unstable nodes.
Now we know the local phase portrait at the finite and infinite singular points of X1.

Using the rational first integral we determine the global phase portrait in the Poncaré disc, see
the next result.

Proposition 8. The phase portrait of X1 is topologically equivalent to

(X1.1) Figure 1(X1.1) if b > 2 and c � 0;
(X1.2) Figure 1(X1.2) if b = 2 and c � 0;
(X1.3) Figure 1(X1.3) if 0 � b < 2 and c � 0.
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The vector field X2. For the vector field X2 we define p = b2 − 4 and q = c2 − 4. Following
the preceding analysis, we obtain for the singular points of the vector field X2.

(2.1) If b > 2, c > 2 and b �= c then X2 has the following seven finite singular points:
(0, 0) is a hyperbolic saddle; (0, (−c +

√
q)/2, 0) is a hyperbolic unstable node, and

(0, (−c − √
q)/2, 0) is a hyperbolic unstable node; ((−b +

√
p)/2, 0) is a hyperbolic

stable node, and ((−b − √
p)/2, 0) is a hyperbolic unstable node and (−2q/(bq ± c

√
pq),

(−cp ± b
√

pq)/2(b2 − c2)) are hyperbolic saddles.

(2.2) If b = c > 2, then X2 has the following six finite singular points: (0, 0) is a hyperbolic
saddle; (0, (−b +

√
p)/2) is a hyperbolic unstable node, and (0, (−b − √

p)/2) is a
hyperbolic stable node; ((−b +

√
p)/2, 0) is a hyperbolic stable node, and ((−b − √

p)/2, 0)

is a hyperbolic unstable node and −(b−1, b−1) is a hyperbolic saddle.

(2.3) If b > 2 and c = 2, then X2 has the following four finite singular points: (0, 0) is a
hyperbolic saddle; ((−b +

√
p)/2, 0) is a hyperbolic stable node, and ((−b − √

p)/2, 0) is
a hyperbolic unstable node; (0,−1) is linearly zero. To study this singular point, we first
translate it to the origin; i.e. we consider the change of variables X = x + 1, Y = y, and the
vector field X2 becomes

X2 = (bX2 + 2XY − XY 2 + X3,−X2 + Y 2 + X2Y − Y 3), (7)

Now we do the blow-up (X, Y ) → (X, v), where Y = vX, and the vector field (7) becomes

X2 = (bX2 + 2X2v + X3 − X3v2,−X − bXv − Xv2).

Rescaling the independent variable by X we get the vector field

X2 = (bX + 2Xv + X2 − X2v2,−1 − bv − v2). (8)

On the straight line X = 0 there are three singular points, namely (0, 0),

(0, (b ± √
(p)/2)), The first is a hyperbolic stable node and the other two are saddles. Undoing

the blow-up, the origin of the vector field (7) has the local phase portrait of figure 3(b).

(2.4) If b > 2 and 0 � c < 2, then X2 has the following three finite singular points: (0, 0) is a
hyperbolic saddle; ((−b +

√
p)/2, 0) is a hyperbolic stable node; and ((−b − √

p)/2, 0) is a
hyperbolic unstable node.

(2.5) If b = 2 and c > 2, then X2 has the following four finite singular points: (0, 0) is a
hyperbolic saddle; (0, (−c +

√
q)/2) is a hyperbolic unstable node, and (0, (−c − √

q)/2) is
a hyperbolic stable node and (−1, 0) is linearly zero. To study this singular point, we first
translate it to the origin; i.e. we consider the change of variables X = x + 1, Y = y, and the
vector field X2 becomes

X2 = (−X2 + Y 2 − XY 2 + X3,−2XY − cY 2 + X2Y − Y 3). (9)

Now doing the blow-up (X, Y ) → (X, v), where Y = vX, the vector field (9) transforms into

X2 = (−X2 + X2v2 + X3 − X3v2,−Xv − cXv2 − Xv3).

Rescaling the independent variable by X we get the vector field

X2 = (−X + Xv2 + X2 − X2v2,−v − cv2 − v3). (10)

On the straight line X = 0 there are three singular points, namely (0, 0),

(0,−c±√
q/2). The first is a stable node and the other two are saddles. Undoing the blow-up,

the origin of the vector field (9) has the local phase portrait of figure 3(c).
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X

Y

Figure 4. The local phase portrait of the vector field (9) for 0 � c < 2 at the origin.

(2.6) If b = 2 and 0 � c < 2, then X2 has the following two finite singular points: (0, 0) is
a hyperbolic saddle and (0,−1) is linearly zero. To study this singular point, we follow the
steps of case 2.5. It follows that now the vector field (10) has only the origin as a real singular
point. Undoing the blow-up, we obtain that the origin of the vector field (9) has the local phase
portrait of figure 4.

(2.7) If 0 � b < 2 and c > 2, then X2 has the following three singular points: (0, 0) is a
hyperbolic saddle; (0, (−c +

√
q)/2) is a hyperbolic unstable node; and (0, (−c − √

q)/2) is
a hyperbolic stable node.

(2.8) If 0 � b < 2, c = 2, then X2 has the following two finite singular points: (0, 0) is a
hyperbolic saddle and (0,−1) is linearly zero. To study this singular point, we follow the
steps of case 2.3. It follows that now the vector field (8) has only the origin as a real singular
point. Undoing the blow-up, we obtain that the origin of the vector field (7) has the local phase
portrait of figure 4.

(2.9) If 0 � b < 2, 0 � c < 2 and b �= c then X2 has the following three finite singular points:
(0, 0) is a hyperbolic saddle and (−2q/(bq ±c

√
pq), (−cp±b

√
pq)/2(b2 −c2)) are centres.

(2.10) If 0 < b < 2, 0 < c < 2 and b = c, then the origin is the unique finite singular point,
which is a centre.

(2.11) If b = c = 0, then the origin is the unique finite singular point, which is a centre.
Note that if b = c = 2 then X2 is not coprime.
Summarizing we have

Proposition 9. The phase portrait of X2 is topologically equivalent to

(X2.1) Figure 1(X2.1) if b > 2, c > 2 and b �= c;
(X2.2) Figure 1(X2.2) if b = c > 2;
(X2.3) Figure 1(X2.3) if b > 2 and c = 2;
(X2.4) Figure 1(X2.4) if b > 2 and 0 � c < 2;
(X2.5) Figure 1(X2.3) if b = 2 and c > 2;
(X2.6) Figure 1(X2.6) if b = 2 and 0 � c < 2;
(X2.7) Figure 1(X2.4) if 0 � b < 2 and c > 2;
(X2.8) Figure 1(X2.6) if 0 � b < 2 and c = 2;
(X2.9) Figure 1(X2.9) if 0 � b < 2, 0 � c < 2 and b �= c.

(X2.10) Figure 1(X2.10) if 0 < b = c < 2.
(X2.11) Figure 1(X2.11) if b = c = 0.
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The vector field X3. For the vector field X3 we define p = b2 + 4 and q = c2 − 4. Following
the preceding analysis, we obtain for the singular points of the vector field X3.

(3.1) If b � 0 and c > 2, then X3 has the following seven finite singular points: (0, 0) is a
hyperbolic saddle; (0, (−c +

√
q)/2) is a hyperbolic unstable node, and (0, (−c − √

q)/2) is
a hyperbolic stable node; ((b ± √

p)/2, 0) are hyperbolic stable nodes and (−2
√

q/(b
√

q ±
c
√

p), (cp ∓ b
√

pq)/2(b2 − c2)) are hyperbolic saddles.

(3.2) If b � 0 and c = 2, then X3 has the following four finite singular points: (0, 0) is
a hyperbolic saddle; ((b ± √

p)/2, 0) are hyperbolic stable nodes; (0,−1) is linearly zero.
To study this singular point, we first translate it to the origin; i.e. we consider the change of
variables X = x, Y = y + 1, and the vector field X3 becomes

X3 = (2XY + bX2 − XY 2 − X3, X2 + Y 2 − X2Y − Y 3). (11)

Now we do the blow-up (X, Y ) → (X, v), where Y = vX, and the vector field (11) becomes

X3 = (bX2 − X3 + 2X2v − X3v2, X − bXv − Xv2).

Rescaling the independent variable by X we get the vector field

X3 = (bX + 2Xv − X2 − X2v2, 1 − bv − v2).

On the straight line X = 0 there are two singular points, namely (0, (b±√
(p)/2)), which are

saddles. Undoing the blow-up, the origin of the vector field (11) has the local phase portrait
of figure 3(d).

(3.3) If b � 0 and 0 � c < 2, then X3 has the following three finite singular points: (0, 0) is a
hyperbolic saddle and ((b ± √

p)/2, 0) are hyperbolic stable nodes.
Summarizing we have

Proposition 10. The phase portrait of X3 is topologically equivalent to

(X3.1) Figure 1(X1.1) if b � 0, c � 0 and b �= c;
(X3.2) Figure 1(X1.2) if b � 0 and c = 2;
(X3.3) Figure 1(X1.3) if b � 0 and 0 � c < 2.

The vector field X4. For the vector field X4 we define p = b2 + 4 and q = c2 + 4. Following
the preceding analysis, we obtain for the singular points of the vector field X4.

(4.1) If b � 0, c � 0 and b �= c then X4 has the following seven finite singular points: (0, 0)

is a hyperbolic saddle; (0, (c ± √
q)/2) are hyperbolic unstable nodes; ((b ± √

p)/2, 0)

are hyperbolic stable nodes and (−2
√

q/(b
√

q ± c
√

p), (cp ∓ b
√

pq)/2(b2 − c2)) are
hyperbolic saddles.

(4.2) If b = c �= 0, then X4 has six finite singular points, namely (0, 0) is a hyperbolic saddle;
(0, (c ± √

q)/2) are hyperbolic unstable nodes; ((b ± √
p)/2, 0) are hyperbolic stable nodes

and −(b−1, b−1) is a hyperbolic saddle.

(4.3) If b = c = 0, then X4 has five finite singular points, namely (0, 0) is a hyperbolic saddle;
(0,±1) are hyperbolic unstable nodes and (±1, 0) are hyperbolic stable nodes.

Summarizing we have

Proposition 11. The phase portrait of X4 is topologically equivalent to

(X4.1) Figure 1(X4.1) if b � 0 and c � 0;
(X4.2) Figure 1(X4.2) if b = c �= 0;
(X4.3) Figure 1(X4.3) if b = c = 0.
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X

Y

Figure 5. The local phase portrait of the vector field (12) at the origin.

The vector field X5. For the vector field X5 we define p− = b2 − 4. Following the preceding
analysis, we obtain for the singular points of the vector field X5.

(5.1) If b > 2, then X5 has six finite singular points, namely (0, 0) is a hyperbolic saddle;
(0,−1) is a hyperbolic unstable node;(− 1

2 (b − √
p−), 0

)
is a stable node and

(− 1
2 (b +

√
p−), 0

)
is an unstable node and(− 1

2 (b ± √
p−), 1

2 (p− ± b
√

p−)
)

are hyperbolic saddles.

(5.2) If b = 2, then X5 has three finite singular points, namely (0, 0) is a hyperbolic saddle;
(0,−1) is a hyperbolic unstable node; (−1, 0) is linearly zero. To study this singular point,
we first translate it to the origin; i.e. we consider the change of variables X = x + 1, Y = y,
and the vector field X5 becomes

X5 = (−X2 + X3,−2XY − Y 2 + X2Y ). (12)

Now we do the blow-up (X, Y ) → (X, v), where Y = vX, and the vector field (12) becomes

X5 = (−X2 + X3,−Xv − X2v − Xv2 + X2v2).

Rescaling the independent variable by X we get the vector field

X5 = (−X + X2,−v − Xv − v2 + Xv2).

On the straight line X = 0 there are three singular points, namely (0, 0), (0,−1). The first is
a hyperbolic stable node and the other two are saddles. Undoing the blow-up, the origin of
the vector field (12) has the local phase portrait of figure 5.

(5.3) If 0 � b < 2, then X5 has two finite singular points, namely: (0, 0) is a hyperbolic saddle
and (0,−1) is a hyperbolic unstable node.

Summarizing we have

Proposition 12. The phase portrait of X5 is topologically equivalent to

(X5.1) Figure 1(X5.1) if b > 2;
(X5.2) Figure 1(X5.2) if b = 2;
(X5.3) Figure 1(X5.3) if 0 � b < 2.

The vector field X6. For the vector field X6 we define p+ = b2 + 4. Following the
preceding analysis, we obtain that X6 has six finite singular points, namely: (0, 0) is a
hyperbolic saddle; (0,−1) is a hyperbolic unstable node;

(
1
2 (b ± √

p+), 0
)

are stable nodes
and

(
1
2 (b ± √

p+),
1
2 (−p+ ∓ b

√
p+)

)
are hyperbolic saddles.
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Summarizing we have

Proposition 13. The phase portrait of X6 is topologically equivalent to

(X6) Figure1(X6).

The vector field X7. For the vector field X7, following the preceding analysis, we obtain for
the finite singular points:

(7.1) If b > 2, then X7 has three singular points: (0, 0) is a hyperbolic saddle;(− 1
2 (b +

√
p−), 0

)
is an unstable node and

(− 1
2 (b − √

p−), 0
)

is a stable node.

(7.2) If 0 � b < 2, then X7 has only the origin as a finite singular point, which is a hyperbolic
saddle.

Note that b = 2 is excluded as X7 is not coprime.
Summarizing we have

Proposition 14. The phase portrait of X7 is topologically equivalent to

(X7.1) Figure 1(X7.1) if b > 2;
(X7.2) Figure 1(X7.2) if 0 � b < 2.

The vector field X8. X8 has three finite singular points, namely (0, 0) is a hyperbolic saddle
and

(
1
2 (b ± √

p+), 0
)

are stable nodes.
Summarizing we have

Proposition 15. The phase portrait of X8 is topologically equivalent to

(X8) Figure 1(X8).

The vector field X9. Fist we note that for c = 1 and b = 0, the vector fields X9 and X5

coincide. In fact for the vector field X9, following the preceding analysis, we obtain for the
finite singular points:

(9.1) If c �= 0, X9 has two finite singular points: (0, 0) is a hyperbolic saddle and (0,−1/c))

is an unstable node.
From the preceding it is clear that the global phase portraits of X9.1 and X5.3 are the same.

(9.2) If c = 0, then X9 coincides with X7.2 when b = 0.
Summarizing we have

Proposition 16. The phase portrait of X9.1 is topologically equivalent to

(X9.1) Figure 1(X5.3) if c �= 0;
(X9.2) Figure 1(X7.2) if c = 0.

The vector field X10. Fist we note that for c = 1 and b = 0, the vector fields X10 and X6

coincide. In fact for the vector field X10, following the preceding analysis, we obtain for the
singular points:

(10.1) If c �= 0, then X10 has six finite singular points, namely (0, 0) is a hyperbolic saddle;
(0,−1/c) is an unstable node; (±1, 0) are stable nodes and (±1,−2/c) are hyperbolic saddles.

(10.2) If c = 0, then X10 coincides with X8 when b = 0.
Summarizing we have

Proposition 17. The phase portrait of X10 is topologically equivalent to
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Figure 6. The local phase portrait of the vector fields X11.1, X11.3 and X15 at the origin.
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Figure 7. The local phase portrait of the vector fields X11.2, X12.2 and X16 at the origin.

(X10.1) Figure 1(X6) if c �= 0;
(X10.2) Figure 1(X8) if c = 0.

The vector field X11. Following the preceding analysis, we obtain for the singular points of
the vector field X11.

(11.1) If 0 < b < 1, or b > 1, then X11 has four singular points, namely (−b, 0) is a unstable
node; (0,−1) is a stable node; (b/(b2 − 1),−b2/(b2 − 1)) is a saddle and (0, 0) is linearly
zero. To study this singular point we do the blow-up (x, y) → (x, v), where y = vx, and the
vector field X11 becomes X11 = (bx2 + x3 − x3v2,−bxv − xv2). Rescaling the independent
variable by x we get the vector field X11 = (bx + x2 − x2v2,−bv + v2). If b �= 0, on the
straight line x = 0 there are two singular points, namely (0, 0) which is a saddle and (0, b)

which is an unstable node. Undoing the blow-up, the origin of the vector field X11 has the
local phase portrait of figure 6.

(11.2) If b = 0, then X11 has two singular points, namely (0, 1) is a stable node and (0, 0) is
linearly zero. To study this singular point we follow the same development as for (11.1), but
now only the origin of the straight line x = 0 is a singular point and the vector field X11 has
the local phase portrait of figure 7(a).

(11.3) If b = 1, then X11 has three singular points, namely (−b, 0) is an unstable node; (0, 1)

is a stable node; (0, 0) has the same behaviour as the origin of (11.1).
Summarizing we have
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Proposition 18. The phase portrait of X11 is topologically equivalent to

(X11.1) Figure 1(X11.1) if 0 < b < 1 or b > 1;
(X11.2) Figure 1(X11.2) if b = 0;
(X11.3) Figure 1(X11.3) if b = 1.

The vector field X12. Following the preceding analysis, we obtain for the singular points of
the vector field X12.

(12.1) If b �= 0, then X12 has four singular points: (b, 0) is a stable node; (0,−1) is a stable
node; b/(b2 + 1),−b2/(b2 + 1)) is a saddle; (0, 0) is linearly zero. To study this singular point
we do the blow-up (x, y) → (x, v), where y = vx, and the vector field X12 becomes

X12 = (bx2 − x3 − x3v2,−bxv + xv2).

Rescaling the independent variable by x we get the vector field

X12 = (bx − x2 − x2v2,−bv + v2).

On the straight line x = 0 there are two singular points, namely (0, 0) which is a saddle and
(0, b) which is an unstable node. Undoing the blow-up, the origin of the vector field X12 has
the local phase portrait of figure 6.

(12.2) If b = 0, then X12 has two singular points: (0,−1) is a saddle and (0, 0) is linearly
zero. To study this singular point we do the blow-up (x, y) → (x, v), where y = xv, and the
vector field X12 becomes X12 = (−x3 − x3v2,−xv2). Rescaling the independent variable by
x we get the vector field X12 = (−x2 − x2v2,−v2). On the straight line x = 0 the origin is the
unique singular point, which is linearly zero. To study this singular point we do the second
blow-up (x, v) → (x,w), where v = xw, and after rescaling the independent variable by x,
the vector field X12 becomes X12 = (−x − x3w2, w −w2 + x2w3). Undoing the two blow-up,
the origin of the vector field X12 has the local phase portrait of figure 7(b).

Summarizing we have

Proposition 19. The phase portrait of X12 is topologically equivalent to

(X12.1) Figure 1(X12.1) if b �= 0.
(X12.2) Figure 1(X12.2) if b = 0.

The vector field X13. The vector field coincides with vector field X11.2 interchanging the
variables x and y and reversing the time.

Summarizing we have

Proposition 20. The phase portrait of X13 is topologically equivalent to

(X13) Figure 1(X11.2).

The vector field X14. X14 coincides with vector field X12.2 changing the variables x into y and
y into −x.

Summarizing we have

Proposition 21. The phase portrait of X14 is topologically equivalent to

(X14) Figure 1(X12.2).
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The vector field X15. X15 has three singular points, namely (−1, 0) is a hyperbolic unstable
node; (−1, 1) is a hyperbolic saddle; (0, 0) is linearly zero. To study this singular point
we do the blow-up (x, y) → (x, v), where y = vx, and the vector field X15 becomes
(x2 + x3,−xv − xv2). Rescaling the independent variable by x we get the vector field
(x + x2,−v − v2), which on the straight line x = 0 has two singular points, namely
(0, 0), (0,−1). The first is a hyperbolic saddle and the second is a hyperbolic unstable node.
Undoing the blow-up, the origin of the vector field X15 has the local phase portrait of figure 6.

Summarizing, we have

Proposition 22. The phase portrait of X15 is topologically equivalent to

(X15) Figure 1(X15).

The vector field X16. X16 has only the origin as a singular point which is linearly zero. To
study this singular point we do the blow-up (x, y) → (x, v), where y = vx, and the vector
field X16 becomes (x3,−xv2). Rescaling the independent variable by x we get the vector
field (x2,−v2), which is homogeneous. So, its phase portrait is one of the six described in
figure 2. Since xQ − yP = xv(x + v), the phase portrait has three invariant straight lines
through the origin, namely x = 0, y = 0 and x + v = 0. Due to the fact that this vector field
at U1 has a hyperbolic stable node and a hyperbolic saddle, it follows that the phase portrait of
this vector field is the one of figure 2(f ). Undoing the blow-up, the origin of the vector field
X16 has the local phase portrait of figure 7(a).

Summarizing, we have

Proposition 23. The phase portrait of X16 is topologically equivalent to

(X16) Figure1(X16).
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